Коленчатые валы
Техническая информация

Коленчатый вал через шатуну воспринимает давление газов возникающее в надпоршневой полости цилиндров, и нагружается силами инерции от неуравновешенных масс механизма, совершаю­щих возвратно-поступательное и вращательное движение. Под действием резко изменяющихся по величине и направлению газо­вых сил и сил инерции коленчатый вал вращается с переменной угловой скоростью, вследствие чего испытывает упругие колебания, подвергается скручиванию, изгибу, сжатию или растяжению.

Сложные условия работы вала вызывают повышенный износ его шеек, деформацию отдельных элементов конструкции и явления усталости материала, порождают крутильные и осевые его колебания. Поэтому конструкция коленчатого вала должна обладать достаточной прочностью, жесткостью и износостойкостью при сравнительно небольшом весе.

Общий вид и элементы конструкции типичного вала автомо­бильного поршневого двигателя показаны на рис. 1, а и б. Колен­чатые валы двигателей автомобильного и тракторного типов изго­товляют методом ковки или литья из среднеуглеродистых сталей марок 45, 45А, 45Г2, 50Г; легированных сталей 45ХН, 40ХНМА, 18ХНВА или из высококачественных чугунов (магниевого, никель-молибденового и др.), обладающих повышенной прочностью.

 

Рис. 1. Общий вид и элементы конструкции коленчатого вала V-образного 8-цилиндрового двигателя ЗИЛ-130:

I, II, III, IV – шатунные шейки

 

Основными элементами коленчатых валов являются: коренные и шатунные шейки, щеки, хвостовик и носок. К обязательным элементам некоторых конструкций автомобильных и других ана­логичных валов относятся также противовесы. Представленный на рис. 1 вал двигателя ЗИЛ-130 и в этом отношении является типичным.

Коренные шейки 12 служат валу опорами, на которых он укла­дывается и вращается в соответствующих опорных (коренных) подшипниках двигателя.

Шатунные шейки 11 служат для шарнирного соединения вала с нижними головками шатунов. Шатунные шейки и устанавливае­мые на них головки шатунов называют иногда кривошипными. Масло к ним подается по сверлениям 5 от шеек 12.

Щеки 13 объединяют в один узел шатунные и коренные шейки. Две щеки, примыкающие к смежным коренным шейкам вместе с одной или несколькими шатунными шейками, образуют криво­шипы (колена) вала.

Хвостовиком называют заднюю часть 6 вала, которая в автомо­бильных двигателях обычно заканчивается фланцем 7, снабженным отверстиями 4 для крепления маховика. В торце хвостовика раста­чивают гнездо 8 под опорный подшипник первичного вала коробки перемены передач, а на цилиндрической его поверхности размещают маслоотражательный буртик 10 и маслоотгонную нарезку (спи­ральную канавку) 9 или же делают гладкую шейку под уплотнительный сальник.

Носком называют переднюю часть 14 вала, на которой устанав­ливаются: шестерня привода газораспределения, маслоотражатель и шкив вентилятора, а в резьбовое отверстие 15 с торца — храпо­вик, необходимый для проворачивания коленчатого вала при пуске двигателя вручную. Если ручной пуск не предусмотрен, то вместо храповика ставится болт, обеспечивающий только крепление дета­лей на носке вала. В канавку 16 закладывается шпонка, фиксирую­щая в строго заданном положении шестерню привода газораспре­деления и удерживающая от проворачивания на носке другие детали.

Противовесы 1 устанавливаются на щеках 13 со стороны, про­тивоположной кривошипу, и служат в многооборотных двигателях для полной или частичной разгрузки коренных опор от местных центробежных сил. В ряде случаев они необходимы для уравнове­шивания двигателей.

Коленчатые валы многоцилиндровых двигателей представляют собой сложную пространственную конструкцию, форма которой во многом предопределяется числом коренных опор, принятым для данного двигателя. В этой связи коленчатые валы разделяют на пол­ноопорные и неполноопорные.

 

Рис. 2. Неполноопорный коленчатый вал рядного 6-цилиндрового двигателя ГАЗ:

1 — фланец крепления маховика; 2 — противовесы: 3 — коренные шейки; 4 — шатунные шейки; 5 — но­сок вала

 

У полноопорных валов между двумя смежными коренными опо­рами размещается только одна шатунная шейка, т. е. число корен­ных шеек всегда у них на одну больше числа шатунных шеек (см. рис. 1). Такие валы применяются в дизелях, карбюраторных V-образных и других двигателях, работающих с большими нагрузками на подшипниках.

Неполноопорные ко­ленчатые валы имеют по две и более шатунных шейки между двумя смежными коренными опорами. Они компакт­нее (короче) полноопор­ных, несколько легче их и менее трудоемки. Но из-за сравнительно боль­шого пролета между коренными опорами такие коленчатые валы не обладают достаточной жесткостью. Для неполноопорных авто­мобильных валов типичной является конструкция вала рядного шестицилиндрового двигателя ГАЗ-51, показанная на рис. 2. Массивные противовесы служат здесь для разгрузки коренных опор от местных центробежных сил.

Коленчатые валы автомобильных и тракторных двигателей подвергаются обязательной статической и динамической баланси­ровке в сборе с маховиком и фрикционной муфтой сцепления. Без этого трудно и практически вообще невозможно обеспечить спокой­ный ход двигателя из-за повышенной его вибрации.

 

Рис. 3. Кривошипы коленчатых валов:

а) литого   вала   двигателя   ЗМЗ-21: б)   кованого вала двигателя МЗМА-408; в)   кованого вала двигателя В-2; 1 — грязеуловитель; 2 — заглушка; 3 — коренная шейка: 4 — каналы подвода масла к поверхности шатунной шейки

 

Для увеличения износостойкости шеек вала наружные поверх­ности их закаливают токами высокой частоты на глубину 3—5 мм до твердости HRC 50—60 и тщательно обрабатывают (шлифуют и полируют), придавая им по возможности строго цилиндрическую форму (овальность и конусность шеек вала в автомобильных двига­телях не должна превышать 0,01 мм). Толщину закаленного слоя выбирают с учетом уменьшения диаметра шеек от перешлифовок при ремонтах двигателя.

Шейки вала с целью уменьшения его веса часто выполняются полыми, что легко достигается при отливке валов.

На рис. 3 показан один из кривошипов литого вала двигателя ЗМЗ-21, у которого полости в шейках получают в процессе отливки.

В этом случае масло подается от коренных к шатунным шейкам с помощью трубочек, которые запрессовывают в отверстия, просвер­ленные через стенки полости коренных шеек. Для фиксации трубо­чек в нужном положении их слегка изгибают, как показано на рис. 3, а. Полости 1 в шатунных шейках, закрытые с двух сторон резьбовыми пробками, образуют грязеуловители. Однако отверстия 4 для подачи масла к шатунным подшипникам при таком соосном с шейкой расположении полости должны быть просверлены на уров­не оси шейки или несколько ниже ее и перпендикулярно к плоскости кривошипа (см. рис. 3, а). Тогда взвешенные в масле твердые тя­желые частицы, включая продукты износа, отбрасываемые центробеж­ной силой к наиболее удаленным от оси вращения стенкам полости, не попадают в шатунные подшип­ники (схема улавливания и накоп­ления тяжелых частичек показана на рис. 3, а).

Дополнительная центробежная очистка масла в грязеуловителях шатунных шеек получила широ­кое распространение. Шатунные шейки кованых валов с этой целью специально рассверливают. Полу­чаемые таким образом грязеулови­тели изображены на рис. 1, а, б и рис. 3, б, б, где показаны криво­шипы карбюраторных двигателей V-образного ЗИЛ-130, рядного МЗМА-408 и V-образного дизеля В-2. У последнего масло подводит­ся к подшипнику главного шатуна через медную трубочку 4, погру­женную заборным концом непосред­ственно в грязеулавливающую по­лость. На каждой шатунной шейке двигателя ЗИЛ-130 размещаются по два шатуна, поэтому и грязеулавливающие полости 3, закрываемые резьбовыми пробками 2 (см. рис. 1, а), высверлены здесь с двух сторон кривошипа. При нали­чии на шейке одного шатуна достаточно одной полости, выпол­ненной по схеме рис. 3, б.

Размеры (диаметр и длину) шеек вала выбирают с учетом ранее выполненных конструкций, а затем уточняют их поверочным расчетом. Шатунные шейки у каждого вала, как правило, имеют одинаковый размер, а коренные часто различаются своей длиной. Наибольшую длину обычно имеют крайние шейки, особенно задняя шейка, примыкающая к хвостовику вала, несущая дополнительную нагрузку от маховика и сцепления. Так, длина задней шейки коленчатого вала ЗИЛ-130 составляет 45 мм против 31 мм у дру­гих его коренных шеек, а в двигателе ЗМЗ-66 все коренные шейки выполнены одинаковой длины. Это позволяет применять взаимоза­меняемые вкладыши для всех его коренных подшипников, что эко­номически более оправдано.

 

Рис. 4. Конструкции щек коленчатого вала и крепление к ним проти­вовесов

 

Наряду с крайними шейками в ряде конструкций удлиняют средние коренные опоры, если это требуется по условиям компонов­ки двигателя, но в целом длину коренных шеек вала стремятся уменьшить. Чем короче шейки и меньше общая длина вала, тем большую жесткость приобретает его конструкция. Жесткость вала повышается также за счет «перекрытия» шеек. Это особенно резко проявляется в современных короткоходных автомобильных двига­телях, у которых сумма радиусов rк + rш коренной и шатунной шеек всегда бывает больше радиуса г кривошипа (см. рис. 4, б).

Для повышения общей прочности вала сопряжение его щек с шейками выполняют с плавными переходами (см. рис. 4, б) — галтелями. Радиусы галтелей рекомендуется выбирать в пределах 0,06÷0,1 от диаметра шеек. Благодаря галтелям заметно умень­шаются местные напряжения в зоне сопряжения щек с шейками. Но так как развитые галтели уменьшают активную длину шеек (их цилиндрическую часть, находящуюся под вкладышами), то целе­сообразно галтели делать двойными: от шейки к технологическому пояску с радиусом r1 (основная доля радиусного перехода) и далее к телу щеки с радиусом r2, как показано на рис. 4, б.

Небольшой технологический поясок в зоне сопряжения щек с шейками является обязательным элементом конструкции вала. При обработке вала он предохраняет шлифовальный круг от воз­можного опасного удара щеки.

Щекам придают овальную, круглую или призматическую (пря­моугольную) формы. Призматические щеки наиболее простые, но по условиям прочности они получаются сравнительно толстыми, что несколько переутяжеляет вал и увеличивает его габариты. В автомобильных двигателях старых моделей, где находили приме­нение валы с призматическими щеками, последние выполнялись с округлыми кромками и углами (см. рис. 4, а). Это позволяло снижать общий вес вала. Следует отметить, что с целью уменьшения веса вала малонагруженные части щек (кромки со стороны противо­положной сопряжению с шейками вала) при любой их форме сре­зают, как показано на рис. 4, а—д.

Круглые щеки (см. рис. 4, в) удобны для механической обработ­ки и обладают достаточной прочностью при относительно малой толщине. С круглыми щеками изготовляется- коленчатый вал V-образного 12-цилиндрового дизеля В-2. Круглые щеки можно использовать также непосредственно в качестве коренных опор в двигателях, вал которых вращается на подшипниках качения. В этих случаях чаще всего применяют разборные коленчатые валы, снабжаемые шариковыми или роликовыми подшипниками. Эле­менты конструкции кривошипа разборного вала на роликовых подшипниках показаны на рис. 4, е.

Овальные щеки (см. рис. 4, б) по своей прочности мало чем уступают круглым щекам, но при такой их форме удается лучше использовать металл и обеспечивать плавные переходы между отдельными элементами конструкции вала (см. рис. 4, б). Благо­даря этому овальные щеки широко применяются в автомобильных и тракторных быстроходных двигателях.

В зависимости от конструкции вала различают короткие и длин­ные щеки. Сочетание коротких и длинных щек применяют для неполноопорных валов, причем в рядных 6-цилиндровых двигателях используются гнутые длинные щеки (см. рис. 2). Щеки коленчатых валов автомобильных и тракторных двигателей часто отковываются или отливаются заодно целое с противовесами (см. рис. 1 и 2).

Противовесы, выполненные отдельно от щек, крепят к ним на шпильках или болтах, как показано на рис. 4, г, д. Гайки шпи­лек и болты тщательно при этом блокируются от возможного ослаб­ления затяжки. Иногда их прихватывают электросваркой. Толщину противовесов выбирают такой, чтобы при ремонте двигателя послед­ние не затрудняли перешлифовку шеек вала.

В качестве подшипников коренных опор в автомобильных дви­гателях обычно применяют тонкостенные биметаллические или триметаллические вкладыши.

Конструкция, их технология изго­товления и фиксация в опорах аналогичны конструкции с вклады­шами шатунных подшипников. От последних они отличаются только большей толщиной стальной ленты, из которой их штампуют. Общий вид вкладышей коренных опор (подшипников) показан на рис. 12 (позиция 12). Для большинства отечественных автомо­бильных двигателей применяют вкладыши коренных подшипников с общей толщиной 2,25 мм. Двигатели автомобилей ГАЗ-53А, ГАЗ-66 и ЗИЛ-130 снабжаются триметаллическими вкладышами коренных подшипников.

Коленчатые валы строго фиксируют от осевого смещения в корен­ных опорах, которое в автомобильных двигателях допускается в пределах всего 0,2 мм. При большей величине смещения возникает опасность нежелательного нарушения взаиморасположения деталей кривошипно-шатунного механизма. Как правило, осевая фиксация осуществляется только у одной из коренных опор с тем, чтобы при тепловом расширении сохранялась возможность перемещения как самого вала, так и элементов остова двигателя. Для фиксации используют либо крайние опоры (задняя — в двигателе ЯМЗ-236; у носка вала — во всех двигателях ЗМЗ и ЗИЛ-130), либо средняя опора (двигатель МЗМА-408). При косозубом шестеренчатом или цепном приводе кулачкового вала газораспределения для фик­сации вала рекомендуется использовать переднюю коренную опору.

Коленчатые валы автомобильных и тракторных двигателей на выходе из картера должны надежно уплотняться в гнездах. При недостаточном уплотнении хвостовика и носка вала возможна как утечка масла из поддона, так и проникновение дорожной пыли в картерную полость двигателя. Утечка масла не только повышает его расход, но и может вызвать аварию из-за «задиров» или выплав­ления подшипников вследствие их перегрева. Не менее опасно и проникновение дорожной пыли, вызывающей повышенный износ трущихся деталей кривошипно-шатунного механизма.

Коленчатый вал уплотняется с помощью различных сальников, а также масло- и пылеотражающих устройств. Уплотнение носка вала особенно сложное.

С внешней стороны отверстие в крышке, через которое прохо­дит носок вала, защищено штампованным пылеотражателем, напрессованным на ступиц и вращающимся вместе со шкивом привода вентилятора. Пылеотражатель препятствует проник­новению к сальнику и в картер дорожной пыли.

Конструкция коленчатого вала и его форма выбираются так, чтобы вне зависимости от тактности двигателя обе­спечивалось равномерное че­редование рабочих ходов при любом принятом числе и рас­положении цилиндров, а так­же достигалось более полное уравновешивание двигателя.

С этой целью колена ва­ла, равноотстоящие от его середины (от оси симметрии), располагают в одной плоско­сти. В четырехтактных одно­рядных двигателях эти ко­лена бывают повернуты в од­ну сторону, т. е. имеют зеркальное расположение.

Чередование рабочих ходов в цилиндрах называют порядком работы двигателя. Для принятого взаиморасположения шатунных шеек вала или угла сдвига его колен существуют несколько поряд­ков работы, но используют тот из них, который обеспечивает более равномерное распределение нагрузки по длине вала. Последова­тельно работающие цилиндры двигателя должны отстоять друг от друга как можно дальше.

Коленчатые валы поршневых двигателей испытывают перемен­ные скручивающие нагрузки, под воздействием которых в них возникают упругие угловые колебания. Сущность таких колебаний можно понять на примере любого упругого стержня, неподвижно закрепленного с одной стороны и несущего массу на другой. Если свободный конец рассматриваемого стержня закрутить на некото­рый угол и отпустить, то под действием упругости и инерционной массы он будет совершать угловые колебания с определенной часто­той (периодом). Стоит только к такому колеблющемуся стержню приложить внешнюю силу, периодически действующую с такой же частотой, как возникает явление резонанса (ритмичное раскачива­ние), вызывающее непрерывное увеличение амплитуды углового колебания стержня и в конечном итоге разрушение его.

Аналогично этому раскачивается и коленчатый вал, к криво­шипам которого прикладываются внешние силы, действующие периодически с частотой, зависящей от числа оборотов вала, тактности двигателя и числа цилиндров. При совпадении периода действия на вал какой-либо гармонической составляющей этих сил с периодом собственных его колебаний наступает явление резонанса.

Число оборотов, соответствующее возникновению резонансных колебаний, называют критическим.

При разработке конструкции коленчатого вала стремятся к тому, чтобы критическое для него число оборотов, соответствующее наи­более опасному резонансу, имело как можно большую величину и не попадало в диапазон рабочих чисел оборотов коленчатого вала. С этой целью коленчатым валам придают возможно большую жест­кость. Из теории колебаний известно, что чем больше жесткость вала при данных моментах инерции масс, колеблющихся вместе с валом, тем выше частота собственных колебаний вала данной системы и тем выше критическое число его оборотов. В результате этого в диапазоне рабочих чисел оборотов вала резонируют гар­моники более высоких порядков. Так как амплитуды этих гармоник уменьшаются с повышением их порядка примерно по экспоненте, то резонанс их тем менее опасен для прочности вала, чем выше порядок гармоники.

Если при расчете вала на крутильные колебания резонанс гар­моники какого-либо порядка, наступающий в рабочей зоне чисел оборотов вала, окажется опасным для прочности вала, то изменяют динамическую систему путем изменения жесткости вала. Если кон­структивно это невыполнимо, то ставят гаситель колебаний, настро­енный на гашение колебаний данной формы, определяющейся их частотой.

Принцип действия гасителей крутильных колебаний основан на частичном поглощении энергии (возникающего крутильного колебания коленчатого вала), затрачиваемой на работу трения в гасителе. Гасители устанавливаются на носке вала или в непосредственной его близости, где угловые колебания имеют макси­мальную величину.

В автомобильных двигателях применяют гасители фрикционные (сухого трения), внутреннего трения (резиновые) и жидкостного трения. Наиболее простыми и распространенными являются гаси­тели внутреннего трения — демпферы (рис. 5).

 

 

Рис. 5. Гаситель крутиль­ных колебаний внутренне­го     трения     двигателя ЗИЛ-114

 

Массивный диск (маховичок) 1 привулканизирован здесь слоем резины 2 к штампованному фа­сонному фланцу 3, который жестко кре­пится к ступице шкива привода венти­лятора. Крутильные колебания колен­чатого вала вызывают колебательное движение маховичка 1 относительно но­ска вала. Вследствие этого в слоях ре­зины возникает внутреннее трение, пог­лощающее часть энергии крутильных колебаний вала. Эта энергия превра­щается в тепло и рассеивается в атмо­сферу. Резиновые гасители изменяют амплитуду угловых колебаний вала двигателя, что способствует уменьше­нию возникающих в нем напряжений. Они достаточно эффективны, просты по устройству и надежны в работе.

В настоящее время применяют гаси­тели жидкостного трения, в которых используют силиконовую жидкость, об­ладающую большой вязкостью и мало зависящую от температуры. В замкну­тое кольцевое пространство силиконо­вого гасителя помещают свободную сейсмическую массу в виде кольца, а в кольцевую полость заливают силико­новую жидкость, в которой должна ко­лебаться сейсмическая масса. Трение, возникающее между вязкой жидкостью и этой подвижной массой, используется для гашения (ослабления)   крутильных колебаний вала.

Необходимость применения демпферов для коленчатых валов обычно возникает в рядных 6 и особенно 8-цилипдровых двигате­лях, имеющих сравнительно большую длину вала.

 

 

Источник: Райков И.Я., Рытвинский Г.Н. Двигатели внутреннего сгорания, 1971 г. 


Newer news items:
Older news items:

 

РЕКЛАМА

Новое на сайте