Топлива и способы смесеобразования, применяемые в двигателях внутреннего сгорания
Техническая информация

В двигателях внутреннего сгорания используются различные: газообразные, жидкие и даже твердые топлива, хотя практическое значение имеют только некоторые из них. Непосредственное сжига­ние, например, пылевидного твердого топлива в цилиндрах двига­теля технически вполне осуществимо, и такие попытки имели место. Однако золообразование в цилиндрах, чрезмерно высокий износ двигателя и другие связанные с этим трудности до сих пор не преодо­лены. Поэтому твердые топлива предварительно газифицируются в специальных установках — газогенераторах или же используют­ся как сырье для получения жидких топлив, например бензола. Таким образом, для приготовления рабочей смеси в двигателях внутреннего сгорания используются, как правило, жидкие или газообразные топлива.

Смесеобразование в поршневых двигателях во многом зависит от вида применяемого топлива.

Газообразное топливо смешивается с воздухом на входе в дви­гатель в специальном смесителе, поэтому в его цилиндры поступает уже готовая горючая смесь.

Топливовоздушную смесь из жидкого топлива и воздуха готовят Двумя способами:

1) чистый воздух и жидкое топливо подаются в цилиндры дви­гателя раздельно и перемешиваются непосредственно в цилиндрах, образуя с остаточными газами рабочую смесь;

2) жидкое топливо перемешивается с воздухом перед поступле­нием в цилиндры, куда поступает готовая горючая смесь.

Следовательно, возможны два способа приготовления топливо-воздушной смеси: вне цилиндров и непосредственно в цилиндрах. В зависимости от этого двигатели внутреннего сгорания принято разделять на двигатели с внешним и внутренним смесеобразованием.

В двигателях с внешним смесеобразованием и зажиганием рабо­чей смеси от электрической искры, работающих на жидком топливе, горючая смесь чаще всего подготавливается в карбюраторах. Такие двигатели принято называть карбюраторными. Внутреннее смесеоб­разование преимущественно используется в двигателях с воспламе­нением рабочей смеси от тепла, накапливаемого в процессе сжатия. Такие двигатели называются двигателями с воспламенением от сжа­тия, или дизелями (по имени изобретателя Рудольфа Дизеля).

В практике применяются и другие сочетания методов приготов­ления и воспламенения рабочей смеси в поршневых двигателях, но они не изменяют основу рассмотренных методов смесеобразования.

Моторные топлива независимо от того, из какого исходного сырья и каким методом они получены, должны обладать определен­ными физико-химическими свойствами, обеспечивающими надеж­ную работу двигателей, хорошую их топливную экономичность и возможно меньшие износы деталей. Экономичность двигателей, а следовательно, и общий расход горючего в известной мере зависят от теплоты сгорания топлива. Особенно большое значение это имеет для транспортных двигателей, так как радиус действия тран­спортных средств зависит от запаса топлива, а емкости их баков ограничены.

Газообразные и жидкие топлива нефтяного происхождения представляют собой смеси различных углеводородов широкого фракционного состава. В практике используются топлива с фрак­ционным составом от легких газообразных до тяжелых, трудно испаряемых.

Физико-химические свойства моторных топлив, как правило, регламентируются государственными стандартами, которые обяза­тельно учитываются при проектировании новых двигателей.

Твердые топлива — антрацит, различные угли, древесина, торф, горючие сланцы и другие — используются для получения таких газообразных топлив, как светильный, коксовый, доменный и газо­генераторный газы, а также жидких топлив в виде сланцевых, угольных и других бензинов и бензолов, пригодных для сжигания в дви­гателях внутреннего сгорания.

Жидкие моторные топлива по роду исходного сырья подразде­ляются на две группы: нефтяные и ненефтяные, получаемые, напри­мер, при соответствующей переработке твердого топлива. В двига­телях внутреннего сгорания в основном применяются жидкие топлива, получаемые в больших количествах путем переработки нефти. Это бензин, керосин, газойлевые и соляровые фракции и даже мазут, который используется иногда в качестве тяжелого нефтя­ного топлива.

Бензин представляет собой наиболее летучую жидкую часть нефти, состоящую в основном из группы индивидуальных углево­дородных соединений от пентана С5Н12 до октана C8H18. Темпера­тура кипения бензиновых компонентов нефти не превышает 185-205°С.

Керосин состоит из более тяжелых углеводородов, выкипающих при температуре 290-300°С. Еще более тяжелыми фракциями являются газойль и соляровое масло. Температура выкипания угле­водородов газойлевой фракции достигает 380°С, а солярового мас­ла — 500°С.

Для карбюраторных двигателей основным топливом служит бензин, а в двигателях с воспламенением от сжатия используется дизельное топливо, основанное на смеси фракций нефти, темпера­тура кипения которых не выходит за пределы 350°С. В крупных стационарных дизелях находят применение тяжелые моторные топлива, состоящие из смеси солярового масла и мазута. Газотур­бинные двигатели работают на керосине.

Нефтяное топливо в основном состоит из химических элементов: углерода С и водорода Н. Содержание углерода колеблется в пре­делах 85 ÷ 87%, а водорода — 13 ÷ 15%. В небольших количествах они содержат кислород О, азот N, серу S и следы воды. Эти эле­менты входят в нефтепродукты в виде химических соединений, главными из которых являются углеводороды, составляющие сле­дующие группы (ряды): алканы, цикланы и ароматические угле­водороды бензольного ряда.

Перечисленные группы углеводородных соединений различаются структурой молекул. Молекулы алканов, например, имеют цепное строение (незамкнутые цепи), в молекулы цикланов входят замкну­тые кольца (циклы) атомов углерода с простой валентной связью, а молекулы ароматического ряда характеризуются наличием шести -членного циклического ядра с более сложной валентной связью между атомами углерода.

Групповой состав углеводородных соединений оказывает боль­шое влияние на физико-химические свойства топлив, предопределяя возможности их использования в определенных типах двигателей.

Для топлив карбюраторных двигателей важнейшим качеством является, например, детонационная стойкость. Если детонационная стойкость топлива не соответствует выбранной (завышенной) сте­пени сжатия, то нормальное протекание процесса сгорания нару­шается. Сгорание приобретает взрывной характер, порождающий ударную волну давления, которая распространяется в цилиндре со сверхзвуковой скоростью. Удары детонационной волны о стенки цилиндра и поршень при многократном отражении вызывают вибра­цию стенок, воспринимаемую как характерный резкий детонацион­ный стук. Работа двигателя с детонационным сгоранием недопустима, так как ухудшает его показатели и приводит к разрушению неко­торых ответственных деталей кривошипно-шатунного механизма.

Детонационная стойкость топлив зависит от группового состава углеводородных соединений. Чем больше в топливе ароматических соединений, тем выше его детонационная стойкость.

Антидетонационные свойства топлив оцениваются октановым числом путем сравнения топлив с эталонами. В качестве эталонов приняты изооктан (и—C8H18), обладающий хорошими антидето­национными свойствами, и нормальный гептан (н — С7Н16) с низ­кими антидетонационными свойствами. Октановое число топлива принимается численно равным процентному содержанию изооктана в такой смеси с нормальным гептаном, которая оказывается равно­ценной данному топливу по детонационной стойкости при испыта­ниях в стандартных условиях. Октановые числа (о. ч.) современ­ных бензинов находятся в пределах 70 ÷ 100 единиц.

Для топлив, применяемых в дизелях, важнейшим качеством является самовоспламеняемость, определяющая степень жесткости работы двигателя, о которой можно судить, например, по резкости характерного стука, возникающего при работе дизеля. Самовоспла­меняемость дизельных топлив оценивается цетановым числом, которое определяют путем сравнения работы стандартного двига­теля на испытуемом топливе и па смеси эталонных топлив. В каче­стве эталонов используются цетан (С16Н34) из группы алканов с хорошей воспламеняемостью и альфа-метилнафталин (С10Н7СН3), являющийся ароматическим углеводородом, стойким против само­воспламенения. Цетановое число топлива принимается численно равным процентному содержанию цетана в такой смеси с альфа-метил нафталином, которая по самовоспламеняемости оказывается равноценной испытуемому топливу.

Чем выше содержание алканов в дизельном топливе, тем выше его склонность к самовоспламенению и тем мягче, без сильных сту­ков работают дизели. Цетановое число (ц. ч.) дизельных топлив составляет примерно 45—50 единиц.

Основные физико-химические параметры жидких топлив, приме­няемых в двигателях внутреннего сгорания автомобильного и трак­торного типов, обусловленные государственными стандартами, при­ведены в таблице.

 

Таблица 1.1

Наименование показателей

Бензины автомобильные с учетом требований ГОСТ 2084-67 *

А-66

А-72

А-76

АИ-93

АИ-98

Фракционный состав:

 

10% перегоняется при температуре

°С, не выше . . . . . . . . . . . . . . . . . . .

 

79

65

 

125

 

70

55

 

115

 

70

55

 

115

 

70

55

 

115

 

70

-

 

115

50% перегоняется при температуре

°С, не выше . . . . . . . . . . . . . . . . . . .

 

115

100

100

100

-

Конец перегонки °С, не выше . . . .

205

185

195

185

195

185

195

185

195

-

Температура застывания °С, не выше . . . . . . . . . . . . . . . . . . . . . . . . .

-

-

-

-

-

Октановое число . . . . . . . . . . . . . . .

66

72

76

93

98

Цетановое число . . . . . . . . . . . . . . .

-

-

-

-

-

Содержание серы %, не более . . . .

0,15

0,12

0,10

0,10

0,10

Содержание смол в мг на 100 мл топлива, не более . . . . . . . . . . . . . . .

15

10

10

7

7

Плотность при +20°С, г/см3 . . . . . .

0,712 – 0,760

Вязкость при +20°С, в сст *** . . . .

0,65 – 0,85

Теплота сгорания низшая в ккал/кг, не менее . . . . . . . . . . . . . . .

10400 - 10500

 

Таблица 1.2

Наименование показателей

Топливо дизельное автотракторное **

А

З

Л

Фракционный состав:

 

10% перегоняется при температуре

°С, не выше . . . . . . . . . . . . . . . . . . .

 

_

_

_

50% перегоняется при температуре

°С, не выше . . . . . . . . . . . . . . . . . . .

 

240

250

270

Конец перегонки °С, не выше . . . .

330

340

360

Температура застывания °С, не выше . . . . . . . . . . . . . . . . . . . . . . . . .

-55

-35

-10

Октановое число . . . . . . . . . . . . . . .

-

-

-

Цетановое число . . . . . . . . . . . . . . .

45

45

45

Содержание серы %, не более . . . .

0,4

0,6

1,0

Содержание смол в мг на 100 мл топлива, не более . . . . . . . . . . . . . . .

30

40

60

Плотность при +20°С, г/см3 . . . . . .

0,825 – 0,830

Вязкость при +20°С, в сст *** . . . .

1,5-2,5

2,2-3,2

3,0-6,0

Теплота сгорания низшая в ккал/кг, не менее . . . . . . . . . . . . . . .

10150

* В числителе - требования для бензина летнего вида, в знаменателе - зимнего вида,

** А - арктическое, З - зимнее, Л - летнее, 

*** 1 сСт = 1 мм²/с.

 

Газообразные моторные топлива широко используются для пита­ния как транспортных, так и стационарных силовых установок. 

Топлива, предназначенные для транспортных газовых двигателей, должны обладать высокой теплотой сгорания, так как иначе трудно обеспечить достаточный запас топлива при ограниченных габаритах и весе транспортных средств и их силовых устройств. Для стацио­нарных силовых установок это требование не является существен­ным, поскольку они могут питаться непосредственно от источников получения газа.

В качестве газообразного топлива в двигателях внутреннего сгорания используют природные, промышленные и газогенератор­ные газы. Природные газы получают из скважин подземных газовых месторождений и на промыслах добычи нефти (промысловые или нефтяные газы); промышленные газы представляют собой продукты переработки нефти, твердых горючих ископаемых (например, при выжиге кокса в доменном производстве, в ряде химических произ­водств и т. д.); газогенераторные газы получают путем газификации различных твердых топлив в газогенераторных установках.

Природные и промышленные газы в зависимости от их агрегатно­го состояния при использовании в качестве топлива подразделяют на два класса или группы: сжимаемые (или сжатые) и сжижаемые (или сжиженные). Эти названия групп носят условный характер, так как при глубоком охлаждении сжиженными могут быть и газы первого класса, имеющие низкую критическую температуру.

К сжимаемым относятся следующие газы: метан СН4, водород Н2, окись углерода СО и их смеси. Эти газы при нормальной тем­пературе остаются в газообразном состоянии при сжатии их до лю­бого высокого давления. Они хранятся в специальных баллонах под давлением в 200 кГ/см2 (≈ 20 Мн/м2). По теплоте сгорания их подразделяют на высококалорийные, среднекалорийные и низко­калорийные.

Высококалорийные газы состоят в основном из метана и имеют низшую теплоту сгорания 5500 ÷ 9000 ккал/м3 (≈ 22—36 Мдж/м3). В эту группу входят газы природные, нефтяные (промысловые) и ка­нализационные, получающиеся при переработке сточных вод город­ских канализационных систем. Сюда же относится метановая фрак­ция коксового газа.

Среднекалорийные газы содержат много водорода и окиси угле­рода; низшая теплота сгорания их составляет 3500 ÷ 5500 ккал/м3 (≈ 14,2—22 Мдж/м3). В основном это коксовый газ, получаемый в больших количествах при выжиге кокса.

Низкокалорийные газы характеризуются небольшим содержа­нием горючих компонентов, состоящих в основном из окиси угле­рода— 20 ÷ 30%. На инертные компоненты (балластную часть) этих газов приходится до 65%, поэтому низшая теплота сгорания их находится в пределах 1000 ÷ 3500 ккал/м3 (≈ 4—14,2 Мдж/м3). В эту группу входят доменный и различные силовые (генераторные) газы. Используются они без предварительного сжатия в основном в стационарных силовых установках.

К сжижаемым газам относятся: этан С2Н6, пропан С3Н8, бутан С4Ню. этилен С2Н4, пропилен С3НС, бутилен С4Н8 и другие компо­ненты нефтяных (промысловых) и промышленных газов. Низшая теплота сгорания этих газов находится в пределах 14000 ÷ 26000 ккал/м3 (56—104 Мдж/м3) — сжижаются они при обычных температурах и относительно невысоких давлениях. Это выгодно отличает их даже от высококалорийных сжимаемых газов, так как позволяет обходиться более тонкостенными баллонами, рассчитан­ными на рабочее давление, не превышающее 16 ÷ 20 кГ/см2 (≈ 1,6—2,0 Мдж/м2).

В качестве топлива для транспортных двигателей применяются в основном пропано-бутановые смеси.

Газообразные топлива по сравнению с бензином обладают более высокими октановыми числами, составляющими 90 ÷ 120 единиц, что позволяет повышать степень сжатия в двигателях без опасения вызвать детонационное сгорание. При работе на газообразном топ­ливе в поршневых двигателях заметно уменьшается также износ стенок цилиндров, меньше накапливается отложений, улучшается смесеобразование, вследствие чего облегчается пуск и обеспечивается более полное сгорание топлива в цилиндрах. Поэтому газообраз­ное топливо целесообразно использовать в автомобильных двига­телях.

В поршневых двигателях с внешним смесеобразованием можно использовать только некоторые из перечисленных видов моторных топлив — газообразные и жидкие, обладающие сравнительно хоро­шей испаряемостью, например бензин. При использовании топлив с недостаточной испаряемостью нельзя получить на входе в цилинд­ры горючую смесь с нужным паросодержанием, что нарушает смесеобразование и расстраивает нормальное протекание рабочего цикла в двигателе. С точки зрения ассортимента потребляемых топлив более предпочтителен поэтому способ внутреннего смесеобразо­вания. Двигатели с внутренним смесеобразованием при соответст­вующей организации процессов могут практически работать на лю­бых жидких моторных топливах, начиная от легких, высокооктано­вых бензинов до тяжелых погонов нефти. Такие многотопливные двигатели получают все большее распространение.

 

 

Источник: Райков И.Я., Рытвинский Г.Н. Двигатели внутреннего сгорания, 1971 г.

 

РЕКЛАМА

Новое на сайте